
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2138

Verification of Interaction Overview Diagrams

Using Colored Petrinets

Vinai G. Biju
 1
, Vinod. K. Agrawal

2

Assistant Prof. Dept. of CSE, Christ University, Bangalore, India
1

Professor, Dept. of Information Science, PESIT, Bangalore, India
2

Abstract: The UML 2 Interaction Overview Diagram (IOD) provides a visual representation of system‟s overall

interactions. The UML 2 IOD visualizes the behaviour of a system only for the interaction among the components and also

a partial order between send and receive message events; however the semantics of communication among the interaction

occurrences and process execution policy remains vague. It does not provide formal approach of specification and has a

weak support for the validation. So, it is extremely important to improve the „quality‟ of the design model using formal

description and thereby validating the highest level of abstraction of design. An attempt has been made in this paper

towards formalizing the IOD Sequence diagrams by mapping it into Colored Petri nets (CPNs). This approach of formal

translation allows a designer using UML 2.0 to verify and validate models using CPN tools.

Keywords: Colored Petri net (CPN), Unified Modeling Language (UML), and Interaction Overview Diagram (IOD).

I. INTRODUCTION

This Interaction Overview Diagram (IOD) combines the

power of sequence diagram and activity diagram together. It

can be used to describe an overview of a complex system by

embedding the objects of Activity Diagram, Inline

interaction or Interaction Occurrences inside a control flow

structure. IOD provides high level structuring mechanism

for sequence diagrams [1]. Even though UML 2 brings more

precision than UML 1.x, it remains informal and lacks tools

for automatic analysis and validation [1]. Compared to UML

1.x, the concrete syntax of activity diagram has remained

mostly the same, but the abstract syntax and semantics have

changed drastically.

IOD illustrates dependence between the important sequences

of a system, which can be presented by an activity diagram.

The notations used in IOD incorporate constructs from

sequence diagrams with fork, join, and decision and merge

nodes from activity diagrams. While in UML 1.x, activity

diagrams have been defined as a kind of state machine

diagrams, but in UML 2 there exist no relation between the

two diagrams and the meaning of activity diagrams is being

explained in terms of Petri net notions like token, flow,

edge-weight and so on. In the same way, sequence diagrams

have been extended considerably, and they have

approximately the same expressive power as High Level

Message Sequence

Charts (MSCs) [2]. IODs are special kinds of activity

diagrams where the activity nodes are actions or interactions

and the activity edges denote the control flow.

A good deal of research has already been dealt with the

semantics of UML 2 activity and sequence diagrams [4], [5],

[6], [7] but only few results are communicated on the

formalization of the IODs which may be used to combine

interactions into a kind of dataflow resonant of activity

diagrams, where the places of activity-states are taken by

interactions.

The main motivation for this paper is to create a constructive

approach to derive a CPN model which realizes the same

scenario as that of IOD. Thus a formal representation

representing multiple scenarios composing an interaction

overview diagram is designed using CPN that has a unique

interpretation and allows the analysis and synthesis of

implementation [15], [16], [17], [22]. If the same scenario

occurs twice then the second instance of the scenario starts

only after the first instance of scenario has been completed

resulting in safe models i.e. all the events of scenario have

been occurred satisfactorily.

Literature review:

Störrle [3] analyzed the UML 2 activity diagrams semantics

and proposed an approach to their formalization. Staines [4]

proposed a suitable formalism to achieve the transformation

from UML 2 activity diagrams to Petri nets. Lam [5]

formalized the execution semantics of activity diagram using

the π-Calculus. This formalization provides a theoretical

foundation as well as a starting point for building automated

software tool. Cengarle and Knapp [6] have provided an

operational semantics to UML 2 interactions. They

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2139

furthermore have addressed the lack of UML interactions to

describe explicitly the variability and proposed extensions

equipped with denotation semantics [7]. Knapp and Wuttke

[8] translated the UML 2 interactions into automata and then

verified that the proposed design meets the requirements

stated in the scenarios by examining models. Kloul and

Küster-Filipe [9] illustrated how to model mobility using

IODs and proposed a formal semantics to the latter by

translating them to the stochastic process algebra PEPA nets.

Paper Outline: Section 2. gives a background of colored

petri nets. Methodology of transformation from IOD to CPN

is detailed in section 3. Verification of the CPN model is

discussed in section 4. A case study has been included in

section 5. Results after verification and analysis using CPN

model are described in section 6 and section 7. State spaces

and report are generated in section 8. Conclusions & future

scope are mentioned in section 9

II. BACKGROUND: FUNCTION OF COLORED PETRI NET

(CPN) MODELS

The UML 2 IOD visualizes the behavior of a system only for

the interaction among the components and also a partial

order between send and receive message events; however

the semantics of communication among the interaction

occurrences and process execution policy remains vague. It

does not provide formal approach of specification and has a

weak support for the validation. So it is extremely important

to improve the „quality‟ of the design model using formal

description and thereby validating the highest level of

abstraction of design. CPN tools can be used to verify

properties like Home, Liveness, and Fairness for any

complex system [18]. It is assumed that the reader has prior

knowledge of properties of CPN. The CPN model is

synthesizable using well established software and hardware

synthesis techniques [14].

CPN model consists of data, places, transitions and arcs.

Location for holding data is known as a place and the actions

are represented by transitions. Places and transitions are

connected by a directed arc which specifies the data flow

paths. The places in CPN model are named from the

preconditions or objects passing the messages. CPN color

sets and variables are defined in the global area of the CPN

model. Tokens represent the data objects and the Color set

defines the token type. Tokens of a particular color are

placed in locations called places.

CPN consists of:

P: set of places.

T: set of transitions.

A: set of arcs.

: set of colour sets.

V: set of variables.

C: colour set function (assigns colour sets to places).

G: guard function (assigns guards to transitions).

E: arc expression function (assigns arc expressions to arcs).

I: initialisation function (assigns initial markings to places)

A guard function G: T expression assigns a guard to each

transition. The Guard expression is evaluated to a Boolean

value. [G(t)] = Boolfor all tT

A set of directed arcs A can be represented by A P T

T P. Each arc starts in a place and ends in a transition or

it start in a transition and ends in a place.

An arc expression function E: A expression assigns an arc

expression to each arc.

[E(a)] = C(p)MSfor all aA, where p is the place connected

to the arc a. Arc expression evaluates to a multiset of tokens

belonging to the colour set of the connected place denoted

by C(p)MS.

A marking is a function M mapping each place p into a

multiset of tokens M(p) C(p)MS. All token values must

belong to the colour set of the placeB(t). A binding element

is a pair (t,b) such that t is a transition and bB(t).The set of

all binding elements of a transition t is denoted BE(t) [10],

[11].

III. METHODOLOGY FOR TRANSFORMING

IOD TO CPN

A mapping rule to transform an interaction overview model

of a system as in Fig.1 to CPN model is discussed in this

section. Initially each fragment of interaction occurrences is

converted to intermediate nets. Then these intermediate nets

are combined to form a single net by

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2140

Fig. 1: Loop, Alt , Opt and Par -sequence Fragments of IOD.

merging the transitions corresponding to the messages of

sequence and communication diagrams. Messages passed

between the objects in communication diagram are also

mapped to transitions in CPN. The intermediate net in Fig.

2b with transitions having label message1 connected from

places object1/precondition1 and object2 /precondition2 is

the same message instance of the sequence diagram sent

from object 1 to object 2.

Algorithm: Mapping rule for IOD Sequence Fragments

Input:

 IOD Sequence Fragments fi

Output:

A Coloured Petri Net model

m = (P, T, A, , V, C, G, E, I)

// assign transition tiinm for each fi

foreach Sequence fragments from top to bottom in the life

line do

, . . { };i i if t mT mT t

end for

//assign place pito each tiin m

for each Transition it of T in m do

. . { };im P m P p

end for

//Add arcs:

foreach transition ti in m do
A P T T P

//Add Arc Expression E(a) fromcolour set C(p)MS and

variables of arc Expression Var(E(a)

:[(()) (())

((()))

MSa A Type E a C p a

Type Var E a

//Arc Expressions E(a) from each node xiand xk is mapped

from the messages mi passed between objects Obiand Obkof

IOD sequence fragment fi

1 2

(,) (,)

(,) () : [(,)

()] ()

i i k i i i k

i k

a A x x m f Ob Ob

x x P T T P E x x

E a M a

//Assign Guard Functions G(t) with respect to Condition and

Guards of loop, alt and opt sequence fragments

Guard conditions in sequence fragments (),G t

. . { ()}mG mG G t

:[(()) ((()))t T Type G t Bool Type Var G t

: [() { | (())

() : (())}]

t T Var t v v Var G t

a A t v Var E a

end for

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2141

Fig. 2 (a) Successive messages in sequence diagram Fig. 2(b) CPN model

Fig. 3: Transforming alt, opt, par block to CPN model

A message passed within the alt fragment between objects is

mapped to a transition in CPN model. Here from Fig.1 and

Fig.3, msg1a() that is passed from Object 1 to Object2 is

mapped to the transition msg 1a() with [altCond1]guard

function. If the [altCond1] guard evaluates to false then,

msg1b() that is mapped to a transition in Fig.3 is fired. The

guard [altCond2] can be used for expressions that represents

„false‟ in the alt fragment. The system is also modeled if „alt‟

fragments have no expressions evaluated to true. This is

represented by the transition „no alt‟. Soon after „alt‟

fragment message is passed on, we receive tokens on aplace

named „Precondition opt‟ as shown in Fig.3 to indicate that

the system can start with next message to be passed along

the next sequence fragment. „Opt‟ Fragment in IOD

sequence fragment is mapped to the transition named „opt‟

in Fig.3. The Boolean expression „cond‟ of opt fragment in

Fig.1 is mapped to arc expressions in CPN model as „If

OptCond then 1‟d else empty‟ in Fig.3. The arc expression

1‟d denotes the message passing of 1 data token as we have

only 1 message passed between objects. Each object like

Object1, Object2 etc. of Fig.1 is mapped to corresponding

„place‟ in Fig.3. The messages msg 4a()and msg 4b() send in

parallel from Object 3 to Object 4 and Object 3 to Object 5

in the parallel construct sequence fragment (par) are

represented in CPN as follows: The „par‟ sequence fragment

of Fig.1 is mapped to a transition named „par‟ in Fig.3. Arcs

are included evolving out of the transition „par‟ to

symbolize parallel firing of tokens. A „fusion‟place is added

to take a note of the total successful transfer of messages of

individual sequence fragments.

IV. VERIFICATION AND ANALYSIS OF CPN MODEL

Once the model has been compiled, the behavior of the

system can be investigated by means of simulations using

CPN tools. These simulations typically have the

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2142

characteristics of single step debugging in which the

movement of token is observed in great detail, and the user

chooses the next binding elements to occur. During which,

the markings of the places are shown directly on the CPN

diagram similar to Fig.3. It typically reveals some

shortcomings and errors in the CPN model which then have

to be resolved. Hence, the first phase normally consists of a

number of iterations switching back and forth between the

editor and the simulator, then, gradually refining and

improving the CPN model. The simulation/execution of the

CPN model is driven by the simulator engine of CPN ML.

Concurrent scenarios where multiple objects communicate

within an interaction fragment of an IOD can be visually

represented and executed in CPN thereby dynamic

visualization and changes can be modeled and viewed.

Scenarios where objects of communication and sequence

diagrams that never communicate can be found out by

executing the model in CPN Tools checking Liveness

Properties. Dependent objects within IOD can be identified

in detail and checked for loops using state space generated

from the CPN model. Conditions for the objects to

communicate within IOD can be checked and verified using

CPNML language. Finally the state of the systems design

represented by IOD after 100 or more iterations of

concurrent message passing between Interaction fragments

can be monitored using the IOD transformed CPN model.

The transition will only be enabled only when the binding

element b = <x=id, d=data> is evaluated to true.

Transitions in addition to expressions has a “guard”

[variable = desired object] which is a Boolean condition.

Adding guard makes the design more robust towards errors.

The predecessor and successor for each object passing the

messages can be plotted with state space graphs using

StateSpace tool. The sequence of message passing between

objects can be checked for infinite loops by fairness

properties of the report generated with state space graphs

and Strongly connected components. Monitors can be

included in the design like “breakpoints” to stop the

simulation and identify the scenario once a particular

condition is fulfilled or an object receives a message in IOD.

V. A CASE STUDY

In order to demonstrate the practical usability of the

proposed mapping process, the requirements for a weblog

Content Management System (CMS) is taken into

consideration as a case study. Weblogs are commonly

referred as blogs, originally started out as privately

maintained web pages for authors to write about anything,

such as personal details, job postings, marketing of products

etc. These days, blogs are usually packaged into an overall

CMS. The Administrator interacts with the system to create a

new blogger's account.

The content management system shall allow an

administrator to create a new blog account, provided the

personal details of the new blogger are verified using the

author credentials database. Bloggers submit new entries to

the system, and the administrator allocates new blog

accounts. A well-publicized blog can attract thousands of

readers. A complete use case description for the "Create a

new Blog Account” may be described as: a new or existing

author requests a new blog account from the Administrator.

The system is limited to recognized authors and so the

author needs to have appropriate proof of identity. A

successful end condition generates a new blog account

created for the author. The sequence of steps can also be

detailed as:

i. Administrator asks the system to create a new blog

account

ii. Administrator selects an account type.

iii. Administrator enters the author's details.

iv. Author's details are verified using the Author

Credentials Database.

v. New blog account is created.

vi. A summary of the new blog account's detailsare

emailed to the author.

 If the steps required to create each of these accounts in

CMS differ slightly from the original use case, then it is

required to describe the general behavior for creating a blog

account captured in the corresponding use cases. Later

specialized use cases are defined in which the account being

created is a specific type, such as a regular account with one

blog or an editorial account that can make changes to entries

in a set of blogs.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2143

Fig. 4: Interaction Overview Diagram for creating weblog

Fig. 6: Sequence diagram for CreateRegularBlogAcc

This is where use case generalization comes in. A more

common way of referring to generalization is by interaction

occurrences in sequence diagram. The most common

problem with sequence diagrams is that IN any interaction

diagram the redundancy can‟t be avoided with another

sequence diagram i.e. often two scenarios overlap. The

solution to the above problem is to make an interaction

occurance “SelectAcctype” as shown IN Fig. 4 that can be

referred to in several other diagrams as provided in UML 2.

Several other operators that can be used in a sequence

diagram are optional (opt), repeated (loop), or an alternative

(alt) [1].

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2144

Fig. 6: Sequence diagram for CreateRegularBlogAcc

Each of the Interaction Occurrences can be represented by a

detailed sub-diagram (sequence diagram) as shown in Fig. 5

and Fig. 6.

These interactions can be combined in different ways to

create new scenarios. Sequence diagram can normally

represent one scenario; so typically, it is required to use one

sequence diagram for the normal scenario and several

sequence diagrams for the alternative scenarios. The main

purpose of sequence diagrams is to show the order of events

between the parts of system that are involved in a particular

interaction creating the weblog account.

Communication diagrams add another perspective to an

interaction by focusing on the links between the participants

or objects. The Administrator selecting an account type and

handling the author's details are shown by communication

diagram. Communication diagrams explicitly show the links

that are needed between participants to pass an intera-ction's

messages. With a quick glance at a communication diagram,

it is possible to show which participants need to be

connected for an interaction to take place. A participant's

name formatted as author: AuthorDetails represents the

<object>:<class>similar to participants on a sequence

diagram. A communication link is shown with a single line

that connects two participants. A link from ui:

AccountCreation to author: AuthDetails in Fig. 4 allow

messages to be passed between them so that the

administrator can store the author details to validate the

details entered.

The UML 2 model is being developed using a case tool such

as Sparx Systems [21] and the CPN model is designed using

CPN tools. CPN models can be integrated with software

development process to reduce the hazards of incorrect

designs and there by helps in increasing the reliability by

incorporating the user controlled view of system

simulations. In the case study, a set of users have registered

to create a new Blog account shown in the place “Users”.

The CMS updates only if the administrator is available

which is shown by constraint that the transition “content

management system” fires only when token is present in the

“admin” place. The token named (n,d) designating the user-

id and nameis passed only whenthe respective transitions

fire. The transition named “CheckAuthorDetails” is fired

only after the respective author details are checked from the

place “valid author” and further on successful evaluation is

added to the database represented by the place “add to

database”. After blog account has been created for the users

they are acknowledged by an Email shown by the transition

named “Email Notification”. Marking of net is the

distribution of tokens in respective places of the net.

Derivation of color sets and their variables are defined as

shown:

colset ID = int timed;

colset DATA = string timed;

colsetIDxDATA = product ID * DATA timed;

closet UNIT = unit;

closet BOOL = bool with (No, Yes);

funprocessingTime() = discrete(30, 50);

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2145

Fig. 7: Mapped CPN model from interaction overview diagram of Fig. 4

var n : ID;

varNetworkAvail : BOOL;

var d : DATA;

Here in this example, “colsetIDxDATA” is defined as a

product of previously defined timed color sets ID and DATA

indicating user-id and name. The variables “n, k, d” is used

to extract tokens from places and to put new token into

output place. The place “ui_AccCreationUI” of Fig. 7 is of

type “IDxDATA” with tokens “(n, d)”. The errors caused by

network connection can be simulated with the boolean

variable “NetworkAvail”l associated with the color set

BOOL.

VI. RESULTS OF VERIFICATION USING CPN MODEL

The CPN model created after transformation of IOD is

executed in CPN Tools. The Movement of tokens from

places and the firing of Transitions are closely monitored. A

step by step execution pattern of firing the transition is

followed to understand the flow of messages in IOD.

Verifying the CPN model in Fig. 7, by step by step execution

through simulation, some of the errors in the design could be

found as follows:. Here from CPN model in Fig.7 it was

possible for the same user to have multiple registration for

Blog accounts which has to be avoided. While execution we

find multiple tokens of “user A” in different places like

AccCreationUIwhich has 4 tokens of “user A”, another 4 set

of tokens in place “Administrator” after Administrator has

checked for authors details.

The users for registration selected from the place “Users”

after assigning proper valid user ID is found to lose the

sequence for registration for Blog. This may result in long

waiting for some users whose ID has already be assigned

and still not registered and checked for author details. The

no of users to be checked for verification has to be limited to

avoid network congestion and delay for author verification.

Also it wasthought to add some mechanism to add some

privileges for some of the premium users, there by dynamic

requirements in the design have to be modelled even during

the later stages of design development. We could also find

that the model doesn‟t handle situations if in case of network

failure.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2146

Fig. 8 CPN model after rectifying the errors from Fig. 7

VII. RECTIFYING THE DESIGN ERRORS FROM

THE MAPPED CPN MODEL

To rectify the errors in the design of system that was

identified from the CPN model of Fig.7, a model was further

designed in CPN as shown in Fig. 8 with the following

details: A place named “Max Users” has be added to the

CPN model in Fig. 8 to avoid network congestion restricting

the no of users in the system. For design simplicity it was

made to allow a maximum of only 3 users to create a blog

account simultaneously. The concept of timed tokens is

included and the arcs from the place “Next User” have been

modified accordingly to avoid users waiting for long for

their account verification. A considerable amount of delay is

added for the processing of “createRegBlogAcc”

transitionusing the function: “funprocessingTime()” after it

was included in the declaration as “fun processingTime() =

discrete(30, 50);”. This is represented by “@ +

processingTime()” mentioned along with the transition

“createRegBlogAcc” in Fig. 8. An additional privilege for

premium registration (“user A”) creating an extra blog

account has been provided thereby satisfying dynamic

requirements to the design. This is shown by the arc having

inscription “if n = 1 then 2`(n,d) else 1`(n,d)” to the place

“web Blog created”. Case of network failure at any point of

transaction, is handled by arc with inscription “If

NetworkAvail then 1‟(n,d) else empty” from the transition

clickSubmit().

VIII. STATE SPACE ANALYSIS

A possible next phase is to apply the state space tool to

verify and validate the functional correctness of the system.

This compilation is handled by the simulator part of CPN

ML. The first phase of applying the state space tool typically

consists of making the CPN model tractable for state space

analysis. The next step is then to generate the state space. A

part of the state space generated for the CPN model of Fig. 8

is shown in Fig. 9. Each node represents a reachable

marking, while each arc represents the occurrence of a single

binding element leading from the marking of the source

node to the marking of the destination node. The number at

the top of each node of state space generated represents the

node number. The number of predecessor and successor

nodes for each state is separated by a colon. Here in Fig. 9 it

is found in node number 17 that @ 1 time instance, there are

tokens 1`(2, “user B”) and 1`(3, “user C”) in the place CMS`

ui_AccCreation_ui. Binding elements for each state

transition can be found on arcs from state space by selecting

the arc. The arc from node 5 to node 8 indicates the binding

as 8: 58 @0 CMS SelectBlogAcc_Type 1: {n=2, d=“user

B”}. This indicates that the transition SelectBlogAcc_Type

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2147

was fired passing the token “n=2, d=user B”.To improve

readability, only the detailed contents of one of the markings

and some of the binding elements are shown. Strongly

connected components facilitate to interpret whether a set of

states can be reached from a given state.

 In addition to state space graph, a state space report may

also be generated for verification of large state spaces. It

provides information about the quality parameters of the

CPN with properties like Home, Liveness, Fairness etc.

These properties aim at identification of final states and

transitions that will not fire from an initial marking. The

initial part of the state space report contains some statistical

information about the size of the state space.

Statistics for partial state space

State Space

 Nodes: 36748

 Arcs: 57966

Secs: 300

 Status: partial

Strongly Connected Component

 Nodes: 36748

 Arcs: 48962

Secs: 0

Boundedness Properties

Best Integer Bounds Up Low

CMS'Users 5 5

CMS'alt_ui_Acc_CreationUI 3 0

CMS'network_failure 3 0

CMS'add_to_Database 3 0

Best Upper Multi-set Bounds

CMS'Max_Users

3`()

CMS'alt_ui_Acc_CreationUI

1`(1,"user A")++

1`(2,"user B")++

1`(3,"user C")

CMS'Ready_to_Validate

1`(1,"user A")++

1`(2,"user B")++

1`(3,"user C")

CMS'web_Blog_created

1`(1,"user A")++

1`(2,"user B")++

1`(3,"user C")

Home Properties

Home Marking: None

Liveness Properties

Dead Markings: 18115

Dead Transition Instances: None

Live Transition Instances: All

Fairness Properties

No infinite occurrence sequences.

The minimum and maximum values of token associated with

a place can be shown by Boundedness properties. These

properties help in deciding as to how many objects need to

be instantiated for a system to meet its requirements. Home

markings denote whether any state returns to the initial state

or not. Liveness properties help to find any transitions that

are not fired throughout the simulation run. Finally fairness

properties check for infinitely occurring sequences. Thus a

system can be validated by removing any number of invalid

states and deadlocks which enables the software analyst to

redefine the use cases and conceptual models [19], [20].

CPN tools help the analyst to derive information regarding

the number of reachable states and transitions that do not fire

in a CPN model. The state space graph generated by CPN

tools demonstrates whether the model is profound and

complete. It contains every possible sequence of state

changes from initial state to the final state. Every path in

state space graph should be consistent with the desired

behaviour.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2148

Fig. 9: State space generated for CPN model

The state space graph generated by CPN tools demonstrates

whether the model is profound and complete. It contains

every possible sequence of state changes from initial state to

the final state. Every path in state space graph should be

consistent with the desired behaviour.

IX. CONCLUSIONAND FUTURE SCOPE

 In this paper an approach was explicated to reduce the gap

between informal and formal methods of loosely coupled

software specification, verification, and validation

methodologies. Here a proposal of developing CPN models

to validate the IOD sequence fragments and evaluate

systems modeled is highlighted. As CPN models are

executable, it is possible to investigate the behaviour of the

system by making simulations of the CPN model. A case

study to create web blog account through content

management system allowing an administrator to verify the

author credentials database is mapped and verified through

CPN model.

Extension of this work may be thought of developing

methodology for transformation of concurrent composite

state chart diagrams to CPN. Also, the use of timing

constraints from timing diagrams and temporal information

from sequence diagrams can be eventually annotated for

performance evaluation using CPN.

ACKNOWLEDGMENT

We express our sincere gratitude towards the CSE dept. of

Christ University Faculty of Engineeringespecially Prof.

Balachandran for his constant motivation and support.

REFERENCES

[1] S. S. W. Ambler. The Elements of UML 2.0 Style.Cambridge

University Press, 2005

[2] ITU-T: (1996). „Message Sequence Charts (MSC)‟International
Telecommunication Union. Recommendation Z.120.

[3] H. Störrle and J. H. Hausmann (2005) „Towards a Formal Semantics

of UML 2.0 Activities‟, Software Engineering, pp. 117-128.
[4] T.S. Staines. „Intuitive Mapping of UML 2 Activity Diagrams into

Fundamental Modeling Concept Petri Net Diagrams and Colored Petri

Nets‟, 15th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, Belfast, Northern Ireland,

pp.191-200,2008.

[5] V. S. W. Lam. „On π-Calculus Semantics as a Formal Basis for UML
Activity Diagrams‟, International Journal of Software Engineering and

Knowledge Engineering, vol. 18, n°. 4, pp. 541-567,2008.
[6] M. V. Cengarle, A. Knapp (2005) „Operational Semantics of UML

2.0 interactions‟, TUM-Report, n°. TUM-I0505,

TechnischeUniversitätMünchen.
[7] M.V. Cengarle, P. Graubmann, S. Wagner (2006) „Semantics of

UML 2.0 Interactions with variability‟, Electronic Notes inTheoretical

Computer Science, vol.160, pp.141-155.
[8] A. Knapp, J. Wuttke (2007) „Model Checking of UML 2.0

Interactions‟, Lecture Notes in Computer Science, Springer, vol. 4364, pp.

42-51.

[9] L. Kloul and J. Küster-Filipe „From Interaction Overview Diagrams

to PEPA Nets‟, In proc. of the Workshop on Process Algebra and

Stochastically Timed Activities PASTA 2005, Edinburgh, Scotland, pp.7- 8,
2005.

[10] K. Jensen (1992), „Colored Petri Nets -Basic Concepts, Analysis

Methods and Practical Use‟.Volume 1: Basic Concepts. Springer-Verlag.
[11] K. Jensen.(1995) „Colored Petri Nets -Basic Concepts, Analysis

Methods and Practical Use‟.Volume 2: Analysis Methods. Springer-Verlag

[12] Jensen, K., Kristensen, L. M., and Wells, L „Colored Petri Nets and
CPN Tools for modeling and validation of concurrent systems‟. Int. J. Soft.

Tools Technol. Transf, 2007, pp. 213-254.

[13] CPN tools, www.daimi.au.dk/cpntools.
[14] J.Cortadella, A. Contradetyev, L. Lavangno, S.Moral. „Task

generation and compile time scheduling for mixed data control embedded

software‟. In proc. of the design automation conference, 2000.

http://www.daimi.au.dk/cpntools

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 2149

[15] Bouabana-Tebibel,Thouraya. „UML2 Interaction Overview Diagram
Validation‟. Proc. of the 2009 Fourth International Conference on

Dependability of Computer Systems, IEEE Computer Society, pp. 11-16.

[16] Bouabana-Tebibel, Thouraya.„Semantics of the interaction overview
diagram‟. Proc. of the 10th IEEE international conference on Information

Reuse & Integration, IEEE Computer Society, 2009, pp. 278-283.

[17] M. V. Cengarle, A. Knapp. (2005) „Operational Semantics of UML
2.0 interactions‟, TUM-Report, n°. TUMI0505,

TechnischeUniversitätMünchen.

[18] J. Jørgensen and S. Christensen. „Executable design models for a
pervasive healthcare middleware system‟. In Proc. of the 5th UML

Conference, volume 2460 of Lecture Notes in Computer Science, Springer-

Verlag, 2002, pp. 140–149.
[19] J. Campos and J. Merseguer. „On the integration of uml and petri

nets in software development‟. In 27th Int. Conf. on Applications and

Theory of Petri Nets and Other Models of Concurrency (ICATPN 2006),

volume 4024 of Lecture Notes in Computer Science, Springer, pp. 19–36.

[20] Andrade, Ermeson and Maciel, Paulo and Callou, Gustavo and

Nogueira, Bruno. „Mapping UML Interaction Overview Diagram to Time
Petri Net for Analysis and Verification of Embedded Real-Time Systems

with Energy Constraints‟. In Proc. of the International Conference on

Computational Intelligence for Modeling Control & Automation, IEEE
Computer Society, 2008, pp. 615-620.

[21] Sparx Systems, www.sparxsystems.com.

[22] Vinai G. Biju and S. K. Rath. „CPN Tools as a Supplement to UML
for Validation of Software Requirements”, Proc. of 4th National

Conference,IndiaCom, 2010.

BIOGRAPHY

Vinai G. Biju received his Bachelors in

Engineering degree in Computer Science

and Engineering from Institution of

Engineers India in 2008 and Masters in

Technology in Computer Science and

Engineering from National Institute of

Technology (N.I.T) Rourkela, India in

2010. He has worked in Accenture in the area of Data

warehousing. He is now working as an Assistant Professor

in the Department of Computer Science and Engineering at

Christ University Faculty of Engineering, Bangalore, India.

His main research interest includes MDA, formal methods

and model checking.

Vinod. K. Agrawal received his

Ph.D. from Indian Institute of Sc.,

Bangalore, India He was the Group

Director for Control Systems Group,

ISAC at Indian Space Research

Organisation (ISRO) and was also the

project director of GSAT-4 at ISRO,

India. He is now the director of Crucible of Research and

Innovation and Professor in the Department of Information

Science and Engineering at PESIT, Bangalore, India. He was

awarded Astronautical Society of India Award Govt. of

India, Dept of Space Merit Award, IETE-

HariRamjiToshniwal Gold Medal Award. He has more than

80 papers in research journals and refereed conferences. His

main research interests include formal methods in software

engineering, fault-tolerant and distributed computing He is a

senior member of IEEE. He is also a member of

International Society for Hybrid Micro-electronic and a

member of the Astronautical Society of India.

http://www.sparxsystems.com/

